Some results about group

Chenzhipeng

March 18, 2016

I found some results really interesting about group which listed at the book Basic Algebra by NATHAN JACOBSON

1 Invertibility in a monoid

Let M donates a monoid, any of the following conditions

- 1. ab = ca = 1
- 2. $aba = a, ab^2a = 1$

can conclude that a is invertible with b as inverse.

1. proof: if ab = ca = 1 then,

$$b = 1 \cdot b = cab = c \cdot 1 = c$$

thus

$$ab = ba = 1$$

2. if aba = a, $ab^2a = 1$ then,

$$1 = ab^{2}a = abab^{2}a = ab$$
$$1 = ab^{2}a = abba = ba$$

end the proof.

2 Semigroup with some properities

Let G be a semigroup having following properites

(a) G contains right unit 1_r , thus $\forall a \in G, a 1_r = a$

(b) $\forall a \in G$ have a right inverse to 1_r $(ab = 1_r)$.

then G is a group. proof: $\forall a \in G$ we have $b \in G$ such that

$$ab = 1_r$$

then there exists $c \in G$ that

$$bc = 1_r$$

hence we have

 $a = a1_r = abc = 1_rc = 1_r1_rc = 1_ra$

so we have $\forall a \in G$

 $a1_r = 1_r a = a$

thus 1_r is the unit in G and G is a monoid. Using conclusion in previous chapter, we know that a is invertible for all $a \in G$. So G is a group.

3 Semigroup with solvable system

G is a monoid, if the equation ax = b and ya = b is solvable for any $a, b \in G$ then G is a group.

proof:

we random choose $a_0 \in G$ and we have x_0 such that

$$a_0 x_0 = a_0$$

 $\forall a \in G$ we have

 $a = ya_0 = ya_0x_0 = ax_0$

and $\forall a \in G$ there exist a b such that

$$ab = x_0$$

. end our prove by foregoing conclusion.

4 Finite semigroup with cancellation law

Let G donate a finite semigroup, is G satisfies

$$ax = ay \Rightarrow x = y$$

and

$$xa = ya \Rightarrow x = y$$

G is a group.

proof: $\forall a \in G$ we consider a map $L_a : G \to G$

$$L_a(g) = ag$$
 for all $g \in G$

since $ax = ay \Rightarrow x = y$ we know that L_a is injective, |G| is finite, we have L_a is bijective.

Similarly, we can define a bijective map R_a .

Thus G is a Semigroup with solvable system which refer to be a group by previos chapter.