Relationship between Spectral Radius, Numerical Radius and Spectral Norm

15110840001 Chenzhipeng

November 7, 2015

1 Definition

1.1 Spectral Radius $\rho(A)$

 $\rho(A)$ is defined as follows:

$$\rho(A) = \max_{k} |\lambda_k|$$

where λ_k donates the k-th eigenvaule of matrix A.

1.2 Numerical Radius w(A)

$$w(A) = \max_{\|x\|_2=1} |x^*Ax|$$

We can check that w(A) is a norm on $\mathbb{C}^{n \times n}$, but not a matrix norm on $\mathbb{C}^{n \times n}$.

1. $w(A) \ge 0$ is trival to prove, if w(A) = 0, we know for all $x \in \mathbb{C}^n$

$$x^*Ax = 0 \Longrightarrow x^*A^*x = 0 \Longrightarrow x^*\frac{A+A^*}{2}x = 0 \text{ and } x^*\frac{A-A^*}{2}x = 0$$

Since $\frac{A+A^*}{2}$ and $\frac{A-A^*}{2}$ are normal matrix, we know that

$$A = \frac{A + A^*}{2} + \frac{A - A^*}{2} = 0 + 0 = 0$$

2. w(aA) = |a|w(A) and $w(A+B) \le w(A) + w(B)$ is apparently correct.

3. We,however,don't have $w(AB) \leq w(A)w(B)$. For instance, let $B = A^*$ where

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

so we have

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$w(AB) = 1$$
 and $w(A) = w(B) = 1/2$ conflict to $w(AB) \le w(A)w(B)$

So w(A) is a norm but not a matrix norm on \mathbb{C}^n .

1.3 Spectral norm $||A||_2$

We now define $||A||_2$ as

$$\|A\|_{2} = \max_{0 \neq x \in \mathbb{C}^{n}} \frac{\|Ax\|_{2}}{\|x\|_{2}} = \max_{\|x\|_{2}=1} \|Ax\|_{2} = \max_{\|x\|_{2}=1} \sqrt{|x^{*}A^{*}Ax|} = \sqrt{\lambda_{\max}(A^{*}A)} = \sigma_{\max}(A)$$

We can easy check that $||A||_2$ is a matrix norm.

$$2 \qquad \rho(A) \le w(A) \le \|A\|_2$$

let λ be a eigenvaule of A and x is its correspond unit eigenvector, thus

$$Ax = \lambda x$$

 \mathbf{SO}

$$x^*Ax = \lambda x^*x = \lambda \|x\|_2 = \lambda$$

hence

$$|\lambda| = |x^*Ax| \le \max_{\|x\|_2=1} |x^*Ax| \le w(A)$$

proved that $\rho(A) \leq w(A)$

Since

$$w^{2}(A) = \max_{\|x\|_{2}=1} x^{*} A x x^{*} A^{*} x$$

and

$$Ax = U^* \begin{pmatrix} \|Ax\|_2 & & \\ & 0 & \\ & & \ddots & \\ & & & 0 \end{pmatrix}$$

 \mathbf{SO}

$$x^*Axx^*A^*x = x^*U^* \begin{pmatrix} \|Ax\|_2^2 & & \\ & 0 & \\ & & \ddots & \\ & & & 0 \end{pmatrix} Ux \le \|A\|_2^2$$

hence $w(A) \leq ||A||_2$ end our prove.

In addition, if A is a normal matrix $\rho(A) = w(A) = ||A||_2$ can be easy proved using Schur decomposition.

3 $\frac{1}{2} \|A\|_2 \le w(A) \le \|A\|_2$

We only need to prove $||A||_2 \le 2w(A)$ Since $(x^*A^*x)^* = x^*A^*x$ So

$$\operatorname{Re}(x^*Ax) = x^*\frac{A+A^*}{2}x$$

and

$$\operatorname{Im}(x^*Ax) = x^* \frac{A - A^*}{2i} x$$

Hence

$$\begin{aligned} \|A\|_2 &= \|\frac{A+A^*}{2} + \frac{A-A^*}{2}\|_2 \le \|\frac{A+A^*}{2}\|_2 + \|\frac{A-A^*}{2}\|_2 \\ &= w(\frac{A+A^*}{2}) + w(\frac{A-A^*}{2}) \le w(A) + w(A) = 2w(A) \end{aligned}$$

end our prove.

In additon, the equation can be achieve with above example in this paper.

At last, we expound that $\rho(A), w(A), ||A||_2$ are all unitary invariance. The prove is trival.