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I only considered some of the problems. I spent about 25 hours to consider
these problems and learn TEX. I choose to use English because It is real fussy
to use Chinese in TEX.

1 Complex Symmetric Matrix

Define: A is called Complex Symmetirc Matrix
if it satisfies that

A = AT

where A is a complex matrix.

None of property did I find in Complex Symmetirc Matrix, since A isn’t
a normal matrix (A∗A = AA∗)in general,so it can’t be diaged by a unitary
matrix.
Here is a example:

A =

 0 i 0
i 1 2i
0 2i 2


We can MATLAB to illustate that A is can’t be diaged by a unitary matrix,
and their eigenvalues are all complex.

Since no good property found in complex symmetric matrix, we usually
consider a Hermite matrix instead of complex symmetric matrix. What’s
more, The A′ in MATLAB donates the conjugate transpose of A instead
of transpose of A. Real symmetric matrix which we usually considered,
essentially, is a kind of Hermite matrix.
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2 A Matrix Factorization

We all know that any complex square matrix A,there are matrix B and C
such that

A = B + C

where B is Herimite matrix,and C is a anti-Hermite matrix. This factoriza-
tion of A is unique.
Prove: suggest

A = B + C

holds,then we have
A∗ = B∗ + C∗ = B − C

so

B =
A+ A∗

2
, C =

A− A∗

2

hence B and C are unique,and we can check that B is Herimite matrix and
C is anti-Herimite matrix.

Similarly,we have
A = B + iC

where

B =
A+ A∗

2
, C =

A− A∗

2i

both B and C are unique Hermite matrix.

Matrix Inequality

|Re(λ(A))| ≤ ρ(
A+ A∗

2
) ≤ σmax(A)

|Im(λ(A))| ≤ ρ(
A− A∗

2i
) ≤ σmax(A)

here λ(A) represent any eigenvalue of square matrix A.
In order to prove the inequality briefly,we introduce a matrix norm w(A)

defined as follows,
w(A) ≡ max

‖x‖2=1
|x∗Ax| = w(A∗)

we can easy prove that w(A) is a matrix norm and unitary invariant.
We have following inequality (it’s well known and easy to prove)

ρ(A) ≤ w(A) ≤ σmax(A)

Equation holds for any normal matrix A.
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Now, I’m going to prove our matrix inequality.
Let λ0 be a eigenvalue of A, and x0 be it’s correspond eigenvector, we may
wish to set that ‖x0‖2 = 1. Thus we have

Ax0 = λ0x0

so
x∗0Ax0 = x∗0λ0x0 = λ0x

∗
0x0 = λ0

hence we have,
x∗0A

∗x0 = λ0

thus,

x∗0
A∗ + A

2
x0 =

λ0 + λ0
2

= Reλ0

Note that A∗+A
2

is a hermite matrix, hence we have

|Reλ0| = |x∗0
A∗ + A

2
x0| ≤ w(

A∗ + A

2
) = ρ(

A∗ + A

2
)

On the other hand,we have

ρ(
A∗ + A

2
) = w(

A∗ + A

2
) ≤ w(

A∗

2
) + w(

A

2
) = w(A) ≤ σ(A)

Similarly,we can prove the second inequation.
The form of the inequation is real beautiful, They say that any

eigenvalue of a square matrix A can be bounded by two Hermite matrix
B,C where A = B + iC,and B,C is unique determined by A.

I explain my inequation in another way
∀A ∈ Cn×n there is a unique Hermite matrix B and anti-Hermite matrix C
such that A = B+ iC. In addition,the real part of λ(A) is bounded by ρ(B)
and the image part of λ(A) is bounded by ρ(C).

Real Matrix Inequality

Since real symmetric matrix is a kind of Hermite matrix and ρ(iC) = ρ(C),
we can get the real form of our inequation as follows,

|Re(λ(A))| ≤ ρ(
A+ AT

2
) ≤ σmax(A)

|Im(λ(A))| ≤ ρ(
A− AT

2
) ≤ σmax(A)
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Inparticular,ifA is a non-negetive matrix.Using theorem of Perron-Frobenius
about non-negtive matrix, we know that A has a non-negtive eigenvalue and
equal to ρ(A), so using our inequality we have,

ρ(A) ≤ ρ(
A+ AT

2
) ≤ σmax(A)

holds for any non-negtive square matrix.
Thanks to my teacher Mr.Wei who let me consider the relationship be-

tween A = B+C. I had no thought about this at first, but I soon found these
interesting inequation when I choose some rand matrix to do experiment in
MATLAB.I don’t know whether the result had been found before, anyway,
I’m so happy to discover and prove the inequation independently.

3 Minimax Principle

(Minimax principle) If φ : Cn → R is continue in Cn, then

sk ≡ max
S ⊆ Cn

dimS = k

min
x ∈ S
‖x‖ = 1

φ(x) ≤ min
T ⊆ Cn

dimT = n− k + 1

max
x ∈ T
‖x‖ = 1

φ(x) ≡ tk

Prove: There exists a S0 ⊆ Cn such that

sk = min
x ∈ S0

‖x‖ = 1

φ(x)

∀T ⊆ Cn, dimT = n− k + 1 ,we have

dimT ∩ S0 = dimT + dimS0 − dimT ∪ S0 ≥ 1

thus we have x0 ∈ T ∩ S0, ‖x0‖ = 1.

max
x ∈ T
‖x‖ = 1

φ(x) ≥ φ(x0) ≥ min
x ∈ S0

‖x‖ = 1

φ(x) = sk

hence

max
S ⊆ Cn

dimS = k

min
x ∈ S
‖x‖ = 1

φ(x) ≤ min
T ⊆ Cn

dimT = n− k + 1

max
x ∈ T
‖x‖ = 1

φ(x)
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I try to prove that the opposite side is also true, but fail since the opposite
side doesn’t hold in general.

if A is Hermitian,then φ(x) = x∗Ax ∈ R,we choose ‖ · ‖ = ‖ · ‖2.Then we
have sk = tk = λk. This is called Courant-Fischer’s minimax theorem.

Since ∀x ∈ Cn, φ(x) = x∗Ax ∈ R ⇐⇒ A is a Hermite matrix.
In order to generalize Courant-Fischer’s minimax theorem,we choose vector
norm to be

‖ · ‖ = ‖ · ‖2
and from now on, define φ(x) and as follows,

φ(x) = |x∗Ax|

If we arrange eigenvalues in absolute descending order.I’m going to prove
that for any normal matrix A

tk ≡ min
T ⊆ Cn

dimT = n− k + 1

max
x ∈ T
‖x‖2 = 1

|x∗Ax| = |λk|

Since A is a normal matrix,by Schur’s theorem,we know A can be diaged
by unitary matrix,that is to say, A have orthogonal eigenvectors x1, · · · xn
coincide with it’s eigenvalues λ1, . . . λn.
Let T0 = σ(xk, . . . xn),then ∀x ∈ T0

x = 〈x, xk〉xk+, · · · + 〈x, xn〉xn

hence

|x∗Ax| = |
n∑
i=k

|〈x, xi〉|2xi| ≤
n∑
i=k

|〈x, λi〉|2|λi| ≤ |λk|
n∑
i=k

|〈x, xi〉|2 = |λk|‖x‖2

so
tk ≤ max

x ∈ T0
‖x‖2 = 1

|x∗Ax| ≤ |λk|

end my prove.
I’m now give an example shows that tk < |λk| maybe true for some k

even the matrix is Hermitian.
Example 1.

A =

(
1 0
0 −1

)
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|λ1| = |λ2| = 1 but t1 = 1, t2 = 0,thus t2 < |λ2|
Since A is anti-Hermitian ⇐⇒ iA is Hermitian. we can get coincide

Courant-Fischers minimax theorem for anti-Hermite matrix.

iλi(A) = max
S ⊆ Cn

dimS = k

min
x ∈ S
‖x‖2 = 1

x∗iAx = min
T ⊆ Cn

dimT = n− k + 1

max
x ∈ T
‖x‖2 = 1

x∗iAx

for any anti-Hermite matrix A.

4 Some Prove in Our Books

4.1 Brief prove of some theorem

1. Courant-Fischer’s minimax theorem can be proved using dimen-
sion formula and spectral theory.

2. Cauchy’s interlace theorem can be proved using Courant-Fischer’s
minimax theorem. so is Weyl’s theory.

4.2 Shorter prove of some theorem

The prove of following result in our book(Page 5-6)is real fussy.

1. For any matrix A
‖A‖2 = σmax(A)

Prove:

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

[x∗(A∗A)x]
1
2 = [ρ(A∗A)]

1
2 = σmax(A)

2. For any unitary matrices Q and Z

‖A‖F = ‖QAZ‖F

Prove:

‖QAZ‖F = [tr(Z∗A∗Q∗QAZ)]
1
2 = [tr(Z∗A∗AZ)]

1
2 = [tr(ZZ∗A∗A)]

1
2 = tr(A∗A)]

1
2 = ‖A‖F
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5 Condition Number

Let ‖ · ‖ be any matrix norm and A be an invertible matrix.The condition
number of A is define as follows,

κ(A) ≡ ‖A‖ · ‖A−1‖

but,what is the condition number for singular matrix ? Actually,we can
replace A−1 to Moore-Penrose’s generalized inverse A+ which satisfied fol-
lowing equations

AXA = A

XAX = X

(AX)∗ = AX

(XA)∗ = XA

we can prove that X is exists and unique,we mark it as A+.
In fact,if A = U∆V is a SVD of A,where ∆ = diag(σ1, σ2, . . . , σk, 0, . . . , 0)
with σ1 ≥ σ2 ≥ . . . ≥ σk > 0.
Then we have

A+ = V ∗∆̂U∗

where ∆̂ = diag( 1
σ1
, 1
σ2
, . . . , 1

σk
, 0, . . . , 0). In addition,if we have a norm for

any matrix(not need to be square),then using Moore-Penrose’s generalized
inverse we can define condition number for any matrix as follows,

κ(A) ≡ ‖A‖ · ‖A+‖

In particular,if A is a square matrix and ‖ · ‖ ≡ ‖ · ‖2.then

κ(A) = ‖A‖2 · ‖A+‖2 =
σ1(A)

σk(A)

here σ1(A) is greatest singular value of A, and σk(A) is the leastest non-zero
singular value of A.

6 I can’t find such Norm

∀ε > 0,∃‖ · ‖∗ satisfies that

‖A‖∗ < ρ(A) + ε

hold for all matrix A ∈ Cn×n.
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If such proposition is ture,I choose a ε0 > 0 then ∃‖ · ‖∗ satisfies that

‖A‖∗ < ρ(A) + ε

hold for all matrix A ∈ Cn×n.
There must be a matrix A1 in Cn×n such that

ρ(A1) < ‖A1‖∗ < ‖A1‖∗ + ε0

so
‖A1‖∗ = ρ(A1) + ε1

where 0 < ε1 < ε0 so

‖2ε0
ε1
A1‖∗ =

2ε0
ε1
‖A1‖∗ =

2ε0
ε1
ρ(A1) +

2ε0
ε1
ε1 = ρ(

2ε0
ε1
A1) + 2ε0

contradicte the condition.
The following proposition may be right,but I couldn’t prove it. ∀A ∈

Cn×n,∀ε > 0, ∃‖ · ‖∗ satisfies that

‖A‖∗ < ρ(A) + ε
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